منابع مشابه
Regular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets
Let $S$ be an ordered semigroup. A fuzzy subset of $S$ is anarbitrary mapping from $S$ into $[0,1]$, where $[0,1]$ is theusual interval of real numbers. In this paper, the concept of fuzzygeneralized bi-ideals of an ordered semigroup $S$ is introduced.Regular ordered semigroups are characterized by means of fuzzy leftideals, fuzzy right ideals and fuzzy (generalized) bi-ideals.Finally, two m...
متن کاملClassifying ω-Regular Partitions
We try to develop a theory of ω-regular partitions in parallel with the theory around the Wagner hierarchy of regular ω-languages. In particular, we generalize a theorem of L. Staiger and K. Wagner to the case of partitions, prove decidability of all levels of the Boolean hierarchy of regular partitions over open sets, establish coincidence of reducibilities by continuous functions and by funct...
متن کاملEnlargements of Regular Semigroups
Quasi-ideals were introduced by Otto Steinfeld [43] as those non-empty subsets Q of a semigroup T satisfying QTD TQ c Q. When T is regular they are precisely the subsets Q of T which satisfy QTQ = Q ([43, Theorem 9.3]). There are many examples of quasi-ideals in regular semigroup theory. We list below some of the most important: • Every subsemigroup of the form eSe (where e is an idempotent) is...
متن کاملCongruences on Regular Semigroups
Let S be a regular semigroup and let p be a congruence relation on S. The kernel of p, in notation kerp, is the union of the idempotent p-classes. The trace of p, in notation trp, is the restriction of p to the set of idempotents of S. The pair (kerp,trp) is said to be the congruence pair associated with p. Congruence pairs can be characterized abstractly, and it turns out that a congruence is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1968
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089500000288